Saturday, January 24, 2015

Free Tutorial -- A beading math lesson with David's Star for children and adults

Maybe you read my paper on using tiling theory to generate angle weaves with beads (PDF).  Then again, maybe you didn't.  One of the most elegantly simple weaves that I presented in that paper is what I called, "David's Star."  You can read about it on pages 12 and 13, and even if you don't want to read anything, you can look at the three bracelets on page 13 that use the same technique as I show here.   
I derived David's Star using mathematics, in particular the mathematics of tilings or tessellations.  Using a tiling to describe this weave, David's Star is the edge-and-cover angle weave for (6.6.6).  Let me explain that mouthful.  First we start with the regular tiling by hexagons, like what we commonly see in natural honeycombs.  This tiling is the black lines labeled (6^3) below. The standard notation for this tiling is (6.6.6), or (6^3) for short.  The 6 is because the tiles all have 6 sides (i.e., they're hexagons), and the 3 is for the 3 hexagons that meet at each vertex. 
The dark blue edge beads are the beads that you place on all of the edges of the tiling, the black line segments.  The cover beads are the beads that cover the thread between the edge beads when you sew each hexgon of beads in a loop of thread.  All of the non-dark-blue beads in the picture are cover beads.  So, David's Star is the edge-and-cover angle weave for (6.6.6).

I like this bead weave for several reasons.  First, it is very simple to stitch and works up relatively quickly.  Therefore, I think it's a good pattern for beginners who want to make a wide flat bracelet.  Second, the arrangement of beads allows for lots of different and beautiful ways to color the beads. Finally, the beads fit together really well: David's Star doesn't show thread or bead holes.  Oh, and one more thing, you can weave it in any direction.

I drew this picture today in preparation for an invited plenary talk and workshop I'll be giving in Washington State in April at a math conference.  For a moment, I considered writing up a complete tutorial and putting it in my Etsy shop.  Then I reconsidered.  For something this simple and basic to the art and math of beadweaving, I think this information should be generally available for free to those who are interested.  So here it is.  Also, a lot of people over the years have suggested that we should use beading more to teach mathematics, and I think that this particular weave is a nice choice for a math lesson. I made the beadwork in the photos here with pony beads and fishing line, and without a needle.  Beading the patch above is a good lesson in visualization.   Using pony beads and fishing line or stretchy thread makes it suitable for children and adults alike. Thin yarn with a size 10 tapestry needle is also a good choice. The friction on the yarn helps hold the beads together.

After trying this pattern, you can ask lots of extension questions in both math and art.  For example, ask, "What does an edge only weave of (6.6.6) look like?"  (Answer: Hexagon angle weave.) Or you could ask, "Draw the tilings (4^4) and (3^6)." "Can you draw the edge-and-cover weaves for these tilings?" and, "Can you bead weave them?"  The answers to these questions are explored in the paper I linked to above.

If you want to play with the art, draw a picture of an interesting coloring for David's Star and then weave it.  If you want a real challenge, (1) pick your own tiling, (2) draw an edge-and-cover weave for it, and then (3) bead it.

If you made it this far, please remember, I make most of my living selling my tutorials and other artwork.  So if you liked this little free-bee, and try it yourself or with a kid, maybe you'll be so pleased that you'll want to hop over to my website or Etsy shop and show your appreciation by buying something. It's like a buy-one-get-one-free, but in the opposite order.  If you've already purchased something, then consider this a thank you gift for supporting my work as an artist and teacher.  Without you, I couldn't afford the time to write this blog every week, and I'd have to get a normal job.  In any case, I hope you enjoyed this little mathematical beading lesson.  Thanks for looking.

Monday, January 19, 2015

Marsala Beaded Bead Necklace

This necklace features Pantone's 2015 Color of the Year, Marsala with aquamarine blue and titanium gray.
beaded beads
It includes 8 beaded beads: 5 Nuts & Washers, a Cube Cluster, an Octahedral Cluster, and a Conway Bead. I carefully selected 7 lampwork glass beads to make the strand into an asymmetric, yet perfectly balanced strand of beads. That's 15 beads in all. Together they make a pallet that is rich and earthy, sophisticated, and oh-so in fashion.

They're all strung on a yard of blue cord of pure silk that I twisted and plied on my spinning wheel.
beaded beads
It includes almost 6 inches (15 cm) of beads. Largest beaded bead measures almost an inch (23 mm).  Thanks for looking!

Tuesday, January 13, 2015

Bacteriophage in Beads for the Microbiologist Nerd in You

This beaded object represents a bacteriophage, a type of virus that infects and replicates within a bacterium. It contains a head (capsid), collar, sheath, tail fibers and base plate. This was one of the many images I worked from of a bacteriophage.

My favorite part of this virus is the elongated icosahedral structure of the capsid, exhibiting a tessellation of pentagons and hexagons for the capsomeres.
For years, people have been telling me that some of my beaded beads look like viruses, so with a push from Dr. Mark O. Martin, I finally decided to bead something that really looks like a virus.
This piece measures about 6 inches high and 7 inches across. It's signed on one foot with my custom stamped gold filled tag.
It's made with glass beads, plastic tubes, wire and thread.  The head is hollow and is stiff yet flexible. This model has loops at the end of each leg so you could mount it on a wall. The legs contain wire, which are flexible.
This is original art. This is also an educational model. Think of it as a tactile mind game, a little bit of sparkle to entertain your brain. If you would like to take it home, it's for sale here.   You can also see an even bigger and more detailed T4 bacteriophage in beads.  They are great gifts for the biologist who has everything because they almost certainly don't have one of these.  Thanks for looking.
Related Posts Plugin for WordPress, Blogger...